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ABSTRACT
Side-information integrated sequential recommendation incorpo-
rates supplementary information to alleviate the issue of data spar-
sity. The state-of-the-art works mainly leverage some side infor-
mation to improve the attention calculation to learn user represen-
tation more accurately. However, there are still some limitations
to be addressed in this topic. Most of them merely learn the user
representation at the item level and overlook the association of the
item sequence and the side-information sequences when calculat-
ing the attentions, which results in the incomprehensive learning
of user representation. Some of them learn the user representations
at both the item and side-information levels, but they still face the
problem of insufficient optimization of multiple user representa-
tions. To address these limitations, we propose a novel model, i.e.,
Multi-Sequence Sequential Recommender (MSSR), which learns
the user’s multiple representations from diverse sequences. Specif-
ically, we design a multi-sequence integrated attention layer to
learn more attentive pairs than the existing works and adaptively
fuse these pairs to learn user representation. Moreover, our user
representation alignment module constructs the self-supervised
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signals to optimize the representations. Subsequently, they are fur-
ther refined by our side information predictor during training. For
item prediction, our MSSR extra considers the side information of
the candidate item, enabling a comprehensive measurement of the
user’s preferences. Extensive experiments on four public datasets
show that our MSSR outperforms eleven state-of-the-art baselines.
Visualization and case study also demonstrate the rationality and
interpretability of our MSSR.
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1 INTRODUCTION
User representation learning is a fundamental problem in sequential
recommendation (SR). The works on SR leverage the item sequence
to learn a vector representation of the user, which is then used to
calculate the item prediction score. With the widespread adoption
of deep learning, many deep sequential recommenders [1, 10, 12,
26, 27] have been proposed. Notably, the works [17, 21, 22] based
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Figure 1: A user’s multiple representations corresponding to
the brand, category and item sequences. (a) A user’s multiple
sequences. The green arrow indicates that the interaction of
the current item is influenced by the previous item, while the
blue arrows indicate that it is also influenced by the relevant
category and brand. (b) A user’s multiple representations.

on the self-attention mechanism [28] and contrastive learning [6]
have exhibited superior performance.

Recently, there have been some works to learn user representa-
tion for side-information integrated sequential recommendation
(SISR). Intuitively, the additional side information can mitigate the
issue of data sparsity and enhance the learning of user represen-
tation. The works on SISR can be broadly categorized into two
branches. The first branch merely learns user representation at the
item level. NOVA-SR [19] and DIF-SR [30] utilize some side informa-
tion to improve the attention distributions on the item sequences,
yielding the more refined user representations at the item level.
The second branch extends the learning of user representations at
both the item and side-information levels. CAFE [16], FDSA [35]
and FDSA-CL [7], utilize independent attention layers to capture
fine-grained interests in item sequences and coarse-grained dy-
namics in side-information sequences. However, there are still two
limitations to be addressed in these works:
• Incomprehensive learning of user representation. Most of
existing works only focus on the attention within a single se-
quence and overlook the intrinsic association of entities from
distinct sequences, such as the attention between a category and
a brand. Taking Figure 1(a) as an example, the current iPad is
influenced not only by the previous purchase of another but also
by the specific category or brand of the product. This oversight
hampers a general understanding of the user preferences by ne-
glecting the potential inter-sequence interactions. Moreover, they
solely learn the representation at the item level, which falls short
in comprehensively representing the user.

• Insufficient optimization of multiple user representations.
Some works consider the user’s interaction sequence as hetero-
geneous sequences and extract the user’s representations at both
item and side-information levels. Taking Figure 1(b) as an ex-
ample, the user has three representations corresponding to his
brand, category and item sequences. However, existing works
have not adequately addressed the need for more supervision
signals when optimizing the multiple representations learned
from the same user.
To address the above limitations, we propose a novel model

called Multi-Sequence Sequential Recommender (MSSR) to model
a user’s item sequence and the corresponding side-information
sequences. For the first limitation, we design a multi-sequence

integrated attention (MSIA) layer to exploit the interactions within
and between sequences to comprehensively represent a user. In
MSIA layers, we calculate the intra-sequence attentions and the
inter-sequence attentions to derive multiple attention matrices. We
then design adaptive attention fusion to assign the weights for dif-
ferent matrices and fuse them to obtain the final attention matrices
for learning the same user’s representations at both the item and
side-information levels. For the second limitation, we design a
user representation alignment module to optimize a user’s multiple
representations. As the representations capture the same user’s
preferences from various perspectives, we assume that they tend to
have relatively high similarity in the representation space. Hence,
we employ the contrastive learning training scheme to moderately
enhance their similarity and further optimize them. Specifically,
we construct the self-supervised signals and introduce contrastive
losses to align the user representation at the item level with the
representation at each side-information level. Moreover, we design
a side information predictor to refine the user representations. After
addressing the limitations, for item prediction, we leverage the com-
monly available side information of the candidate item to consider
the user’s preference at both the item and side-information levels.

In conclusion, we summarize our main contributions as follows:
• We propose a novel model called Multi-Sequence Sequential Rec-
ommender (MSSR), which effectively learns the user’s multiple
representations from mutually interconnected sequences.

• We design a multi-sequence integrated attention layer to adap-
tively leverage both intra- and inter-sequence interactions. More-
over, we propose a user representation alignment module for
optimizing the representations of the same user and a side infor-
mation predictor to further refine them. At last but not least, we
leverage the side information of the candidate item to make a
comprehensive user preference measurement.

• We conduct extensive experiments on four public datasets, demon-
strating that our MSSR outperforms both the SR and SISR base-
lines. Additionally, visualization and case study provide insights
into the rationality and interpretability of our MSSR.

2 PROBLEM DEFINITION
We have a set of users U and a set of items V . Side informa-
tion comprises item-related information, such as category, as well
as behavior-related information, such as position. Suppose there
are 𝐾 types of side information, and the set is denoted as A =

{𝑎1, . . . , 𝑎𝑘 , . . . , 𝑎𝐾 }. We use C𝑘 to represent the set of all the con-
crete values about the side information 𝑎𝑘 .

For a user 𝑢 ∈U, his or her side-information integrated interac-
tion sequence is represented as S𝑢 = {𝒔𝑢 [1], . . . , 𝒔𝑢 [𝑖], . . . , 𝒔𝑢 [𝑛]},
where 𝑛 is the sequence length. Each interaction can be denoted as
𝒔𝑢 [𝑖] = (𝒗𝑢 [𝑖], 𝒄𝑢𝑎1 [𝑖], . . . , 𝒄

𝑢
𝑎𝑘

[𝑖], . . . , 𝒄𝑢𝑎𝐾 [𝑖]), where 𝒗
𝑢 [𝑖] ∈V de-

notes the item ID at time step 𝑖 , and 𝒄𝑢𝑎𝑘 [𝑖] ∈C𝑘 denotes the specific
value of the side information 𝑎𝑘 . Then S𝑢 can be conceptualized as
the integration of the multiple sequences: S𝑢 = (𝒗𝑢 , 𝒄𝑢𝑎1 , . . . , 𝒄

𝑢
𝑎𝐾

).
Given the multiple sequences of user𝑢, the task of side-information
integrated sequential recommendation is to predict the next item
𝒗𝑢 [𝑛+1] for user 𝑢, which can be formulated as:

𝒗𝑢 [𝑛+1] = argmax
𝑣𝑖 ∈V

𝑃

(
𝒗𝑢 [𝑛+1] = 𝑣𝑖

��𝒗𝑢 , 𝒄𝑢𝑎1 , . . . , 𝒄𝑢𝑎𝐾 )
. (1)
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Figure 2: The overview of our MSSR. Our MSSR takes multiple sequences as input and obtains the embedding matrices via
the embedding layers. These matrices are fed into the multi-sequence integrated attention layers to learn the user’s multiple
representations, which are further optimized by the user representation alignment module. Finally, the prediction module
utilizes the learned representations to perform side information prediction (during training) and item prediction.

3 METHODOLOGY
As illustrated in Figure 2, our MSSR has three key modules: (1)
multi-sequence integrated attention (MSIA) layers; (2) user repre-
sentation alignment (URA); and (3) prediction. First, we embed mul-
tiple sequences into corresponding embedding matrices E𝑣 ∈R𝑛×𝑑 ,
E𝑎1 , . . . ,E𝑎𝐾 ∈R𝑛×𝑑 ′ , where 𝑑 and 𝑑′ are the latent dimensionality
of item and side information, respectively. Next, we introduce the
three key modules.

3.1 Multi-Sequence Integrated Attention Layers
We input embedding matrices into the MSIA layers to attain the
representation matrices. Among them, side-information representa-
tion matrices are learned at the first MSIA layer, which is described
in detail at Sec. 3.1.4. Note that we follow [19, 30] and input the
original side-information embedding matrices into each MSIA layer.
The overall process can be formulated as follows,

R1
𝑣,R𝑎1 , . . . ,R𝑎𝐾 = MSIA(1) (

E𝑣, E𝑎1 , . . . ,E𝑎𝐾
)
, (2)

Rℓ𝑣 = MSIA(ℓ )
(
Rℓ−1𝑣 , E𝑎1 , . . . ,E𝑎𝐾

)
, ℓ ∈ {2, . . . , 𝐿}. (3)

By 𝐿 MSIA layers, we attain the representation matrices of each
sequence, i.e., R𝐿𝑣 ∈R𝑛×𝑑 ,R𝑎1 , . . . ,R𝑎𝐾 ∈R𝑛×𝑑 ′ . Following [22], we
take the last element of R𝐿𝑣 as the user representation at the item
level, i.e., 𝒓𝑢𝑣 = R𝐿𝑣 [𝑛] ∈R𝑑 . Similarly, we have the user represen-
tations at various side-information levels, i.e., 𝒓𝑢𝑎1 , . . . , 𝒓

𝑢
𝑎𝐾

∈ R𝑑 ′ .
Next, we elaborate on the MSIA layer, using the learning process
of representation matrices at the first layer.

3.1.1 Sequence-specific Projection. To decouple the later at-
tention calculation [30], we perform sequence-specific projections
on each embedding matrix to get query, key and value matrices
of 𝑀 different attention heads. We take the query matrix of each
sequence at the𝑚-th attention head as an example,

Q𝑚𝑣 = 𝑓𝑄𝑚𝑣 (E𝑣) , Q𝑚𝑎𝑘 = 𝑓𝑄𝑚𝑎𝑘

(
E𝑎𝑘

)
, (4)

where Q𝑚𝑣 ∈ R𝑛×
𝑑
𝑀 , Q𝑚𝑎𝑘 ∈ R𝑛×

𝑑′
𝑀 , 𝑎𝑘 ∈ A is a type of side infor-

mation, and both 𝑓𝑄𝑚𝑣 (·) and 𝑓𝑄𝑚𝑎𝑘 (·) denote a linear layer that
projects the embedding matrix of a specific sequence. Similarly,
we attain K𝑚𝑣 , V𝑚𝑣 as the key and value matrices of the item se-
quence, and |A| pairs of key and value matrices (K𝑚𝑎𝑘 ,V

𝑚
𝑎𝑘
) of the

side-information sequences.

3.1.2 Intra-sequence Attention. We utilize dot product to calcu-
late attentions of entity pairs in a single sequence. Given two items
at the positions 𝑖 and 𝑗 in an item sequence, we can calculate their
attention as follows,

A𝑚𝑣 [𝑖, 𝑗] = Q𝑚𝑣 [𝑖]
(
K𝑚𝑣 [ 𝑗]

)⊤
, (5)

whereA𝑚𝑣 ∈R𝑛×𝑛 denotes the attention matrix of an item sequence
at the𝑚-th attention head. Similarly, we attain A𝑚𝑎1 , . . . ,A

𝑚
𝑎𝑘

as the
attention matrices of the other sequences. We attain |A|+1matrices
by calculating the intra-sequence attention on all the sequences.

3.1.3 Inter-sequence Attention. To capture the association of
two entities from distinct sequences, we propose the inter-sequence
attention. For each user, we have an item sequence and the corre-
sponding |A| side-information sequences. Without loss of gener-
ality, we utilize two of these sequences and denote them with the
notations 𝑥 and 𝑦, respectively, where 𝑥,𝑦 ∈A∪{𝑣} and 𝑥 ≠𝑦.

As the two entity representations from distinct sequences are
derived from different embedding spaces, inspired by [13], we intro-
duce a parameter matrixW and construct a bi-linear layer to handle
this heterogeneity. Given the entity 𝑥𝑖 from sequence 𝑥 and the
entity 𝑦 𝑗 from sequence 𝑦, their attention is calculated as follows,

A𝑚𝑥,𝑦 [𝑖, 𝑗] = Q𝑚𝑥 [𝑖]W
(
K𝑚𝑦 [ 𝑗]

)⊤
, (6)

where A𝑚𝑥,𝑦 ∈R𝑛×𝑛 denotes the attention matrix of the sequence
pair (𝑥 ,𝑦) at the𝑚-th attention head. Note that we attain |A|(|A|+1)
matrices by pairwise combination of different sequences, because
the bi-linear layer is asymmetric.
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Figure 3: The comparison of the representation learning processes of NOVA-SR, DIF-SR and our MSSR. Note that we use only
one kind of side information for a clear illustration.

3.1.4 Adaptive Attention Fusion. We can attain ( |A|+1)2 at-
tention matrices after calculating the intra-sequence and inter-
sequence attentions on all the sequences. Then we conduct the
fusion operation on these attention matrices, and the matrix set
for learning item representation matrix is formulated as 𝔄𝑣 ={
A𝑚𝑧 |𝑧 ∈A∪{𝑣}

}
∪

{
A𝑚𝑥,𝑦 |𝑥,𝑦 ∈A∪{𝑣} , 𝑥 ≠𝑦

}
. Inspired by [37],

we introduce an extra learnable parameter for each matrix to adap-
tively assign the corresponding fusion weight to get the fused
attention matrix as follows,

Ã𝑚𝑣 = F
(
𝒘 [1]𝔄𝑣1 , . . . ,𝒘 [𝑖]𝔄𝑣𝑖 , . . . ,𝒘 [𝐵]𝔄𝑣𝐵

)
, (7)

where 𝐵 = ( |A|+1)2, 𝔄𝑣
𝑖
∈𝔄𝑣 , Ã𝑚𝑣 ∈R𝑛×𝑛 , 𝒘 ∈R𝐵 is a vector con-

taining learnable weights that sum to one, and the fusion function
F is explored in [19], including addition, concatenation and gating.

We also learn the side-information representation matrices. Dif-
ferent from Eq.(7) that takes all the matrices, we merely use the
matrices that are calculated by side-information query and key
matrices. Because the side information, such as the category, is
relatively coarser-grained compared with the item ID, the attention
fusion may not require the fine-grained information from the items.
The matrix set for learning the side-information representation ma-
trixR𝑎𝑘 is formulated as𝔄𝑎𝑘 =

{
A𝑚𝑧 |𝑧 ∈A

}
∪
{
A𝑚𝑥,𝑦 |𝑥,𝑦 ∈A, 𝑥 ≠𝑦

}
.

Similarly, the fused attention matrix for learning side-information
representation matrix is calculated as follows,

Ã𝑚𝑎𝑘 = F
(
𝒘′ [1]𝔄𝑎𝑘1 , . . . ,𝒘′ [𝑖]𝔄𝑎𝑘

𝑖
, . . . ,𝒘′ [𝐵′]𝔄𝑎𝑘

𝐵′

)
, (8)

where 𝐵′ = |A|2, 𝔄𝑎𝑘
𝑖

∈ 𝔄𝑎𝑘 , Ã𝑚𝑎𝑘 ∈ R𝑛×𝑛 , 𝒘′ ∈ R𝐵′
is a vector

with learnable weights, and the sum of which also equals one. We
calculate the side-information representation matrices only at the
first layer as Eq.(2) to save computation, because the embedding
matrices of side information inputted at each layer are the same.

We attain the output of the𝑚-th attention head using the fused
attention matrix and the item value matrix, then concatenate the
outputs of all the attention heads as the input for a feed-forward
network to attain the item representation matrix as follows,

H𝑚𝑣 = softmax

(
Ã𝑚𝑣 ⊗ 𝚫

√
𝑑

)
V𝑚𝑣 , (9)

R1
𝑣 = FFN

(
concat

(
H1
𝑣, . . . ,H

𝑚
𝑣 , . . . ,H

𝑀
𝑣

)
W𝑣

)
, (10)

where W𝑣 ∈ R𝑑×𝑑 is a parameter matrix, and 𝚫 is the causality
mask for preventing the future information in the sequence [12].

Similarly, we can attain side-information representation matrices
R𝑎1 , . . . ,R𝑎𝐾 ∈R𝑛×𝑑 ′ .

We show the representation learning processes of NOVA-SR [19],
DIF-SR [30] and our MSSR in Figure 3 to illustrate their differences
and relations. We also keep the value matrices non-invasive, fol-
lowing NOVA-SR and DIF-SR, but we further propose the inter-
sequence attention and adaptive attention fusion to learn the rep-
resentations at both the item and side-information levels.

3.2 User Representation Alignment
We construct the self-supervised signals and adopt the contrastive
learning training scheme to effectively optimize a user’s multiple
representations. Inspired by [5], we employ a dropout layer [25] as
a model-level augmentation to construct the positive sample pairs
in the contrastive loss.

Unlike the prior work [22] that re-encodes the sequence and
derives a new representation, we directly utilize a dropout layer
to attain the augmented item-level representations to reduce the
computational complexity, i.e., 𝒓𝑢𝑣 =Dropout(𝒓𝑢𝑣 ). Then, for each
representation at the side-information level 𝒓𝑢𝑎𝑘 , we treat (𝒓

𝑢
𝑣 , 𝒓

𝑢
𝑎𝑘
)

as a positive pair and align the user’s two representations via a
contrastive loss. Finally, we finish |A| pairs of alignment to achieve
the overall alignment of the user’s representations.

Considering a user mini-batch B=
{
𝑢1, . . . , 𝑢 | B |

}
and a type of

side information 𝑎𝑘 , we have 2|B| representations [𝒓𝑢1𝑣 , 𝒓𝑢1𝑎𝑘 , . . . ,
𝒓
𝑢 |B|
𝑣 , 𝒓𝑢 |B|

𝑎𝑘
]. For a positive pair (𝒓𝑢1𝑣 , 𝒓𝑢1𝑎𝑘 ), its corresponding negative

pair can be denoted as (𝒓𝑢1𝑣 , 𝒓−), where 𝒓− ∈R−
𝑢1 =

{
𝒓𝑢2𝑎𝑘 , . . . , 𝒓

𝑢 |B|
𝑎𝑘

}
.

Therefore, to align the representation pair (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 ), the contrastive
loss is formulated as follows,

L𝑐𝑙 (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 ) = −log
𝑓 (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 )

𝑓 (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 ) +
∑

𝒓−∈R−
𝑢
𝑓 (𝒓𝑢𝑣 , 𝒓−)

, (11)

𝑓 (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 ) = exp
(
𝒓𝑢𝑣W

′ (𝒓𝑢𝑎𝑘 )
⊤
)
, (12)

𝑓 (𝒓𝑢𝑣 , 𝒓−) = exp
(
𝒓𝑢𝑣W

′ (𝒓−)⊤
)
, (13)

where W′ ∈R𝑑×𝑑 ′ is the parameter matrix for dimension transfor-
mation. Based on Eq.(11), the overall contrastive loss that considers
all the pairs of representation alignment is defined as follows,

L𝑐𝑙 =
∑︁
𝑎𝑘∈A

L𝑐𝑙 (𝒓𝑢𝑣 , 𝒓𝑢𝑎𝑘 ) . (14)

By minimizing L𝑐𝑙 , we realize the alignment of the user’s mul-
tiple representations, which utilizes the self-supervised signals to

417



Multi-Sequence Attentive User Representation Learning for Side-information Integrated Sequential Recommendation WSDM ’24, March 4–8, 2024, Merida, Mexico

effectively optimize the user’s multiple representations learned
from MSIA layers.

3.3 Prediction
3.3.1 Side Information Predictor. Inspired by [30], we design
the side information predictor to further refine the user’s multiple
representations during training. We use the learnable gated weights
to quantify the relative importance of the user representations
at the item and side-information levels. And the gated weight is
calculated as 𝛼 = 𝜎

( [
𝒓𝑢𝑣 ; 𝒓𝑢𝑎𝑘

]
W𝑔

)
, whereW𝑔 ∈R(𝑑+𝑑

′ )×1. For the
side information 𝑎𝑘 , the prediction is formulated as follows,

�̂�𝑎𝑘 = 𝜎

(
𝛼 · 𝒓𝑢𝑣W′

𝑣 + (1 − 𝛼) · 𝒓𝑢𝑎𝑘W
′
𝑎𝑘

)
, (15)

whereW′
𝑣 ∈R𝑑×|C𝑘 | andW′

𝑎𝑘
∈R𝑑 ′×|C𝑘 | are learnable parameters,

and �̂�𝑎𝑘 is a |C𝑘 |-dimensional probability. To support multi-labeled
side information, we follow [30] and adopt the binary cross-entropy
loss for the task of side information prediction as follows,

L𝑎𝑘 = −
| C𝑘 |∑︁
𝑗=1

𝒑𝑎𝑘
𝑗
log(�̂�𝑎𝑘

𝑗
) + (1 − 𝒑𝑎𝑘

𝑗
)log(1 − �̂�𝑎𝑘

𝑗
), (16)

where 𝒑𝑎𝑘 is a |C𝑘 |-dimensional multi-hot vector of the ground
truth. Minimizing L𝑎𝑘 and training to predict the side information
compel both the item and side-information level representations to
incorporate useful information from the supervised signal of the
ground truth, which helps to further refine them.

3.3.2 ItemPredictor. Typical sequential recommenders only con-
sider item ID information of the candidate items and measure the
user’s preference at the item level. In addition to ID information, we
also use the commonly accessible side information of the candidate
items to comprehensively measure the user’s preference at both
the item and side-information levels.

We calculate the dot products between the user’s different rep-
resentations and the corresponding types of embeddings w.r.t the
candidate item, and then leverage their learnable weighted summa-
tion as the final item prediction score. A gating network is exploited
to learn the weight vector as follows,

𝒈 = softmax
(
MLP(

[
𝒓𝑢𝑣 ; 𝒓

𝑢
𝑎1 ; . . . ; 𝒓

𝑢
𝑎𝐾

]
)
)
, (17)

where 𝒈 =
[
𝒈𝑣,𝒈𝑎1 , . . . ,𝒈𝑎𝐾

]
∈ R1+|A | contains the weights that

sum to one. Considering a user 𝑢 and a candidate item 𝑣𝑖 , the side-
information fused item prediction score is defined as follows,

�̂�𝑣𝑖 = 𝒈𝑣 · 𝒓𝑢𝑣 (𝒆𝑖𝑣)⊤ +
∑︁
𝑎𝑘∈A

𝒈𝑎𝑘 · 𝒓𝑢𝑎𝑘 (𝒆
𝑖
𝑎𝑘
)⊤, (18)

where 𝒆𝑖𝑣 is the item embedding of 𝑣𝑖 , and 𝒆𝑖𝑎𝑘 is the corresponding
embedding of the side information 𝑎𝑘 , such as the category embed-
ding. By calculating the prediction scores of all the candidate items,
we attain the probability distribution �̂� = softmax(�̂�𝑣1 , . . . , �̂�𝑣|V| ) ∈
R |V | . Then we use the cross-entropy loss to minimize the distance
between �̂� and the ground truth 𝒑 ∈R |V | (a one-hot vector) for the
task of item recommendation as follows,

L𝑟𝑒𝑐 = −
|V |∑︁
𝑖=1

𝒑 [𝑖] log(�̂� [𝑖]). (19)

Table 1: Statistics of the four processed datasets.
Dataset Yelp Toys Beauty Sports
# Users 30,499 19,412 22,363 35,598
# Items 20,068 11,924 12,101 18,357
# Avg. Interactions / User 10.4 8.6 8.9 8.3
# Avg. Interactions / Item 15.8 14.1 16.4 16.1
# Interactions 317,182 167,597 198,502 296,337
Sparsity 99.95% 99.93% 99.93% 99.95%

3.4 Model Training and Inference
We adopt the multi-task learning strategy to train our MSSR by
minimizing the summation of the item recommendation loss, the
contrastive loss and the side-information prediction loss,

L = L𝑟𝑒𝑐 + 𝜆1L𝑐𝑙 + 𝜆2
∑︁
𝑎𝑘∈A

L𝑎𝑘 , (20)

where 𝜆1 and 𝜆2 are tradeoff parameters.
We utilize our MSSR to calculate the prediction scores of all

the candidate items via Eq.(18) and recommend the item with the
highest score as the next item for user 𝑢:

𝒗𝑢 [𝑛+1] = argmax
𝑣𝑖 ∈V

�̂�𝑣𝑖 . (21)

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following questions:

• RQ1: How does our MSSR perform compared with state-of-the-
art baselines?

• RQ2: What is the effect of different modules in our MSSR?
• RQ3: What is the impact of some other options for the design of
our attention layer and item predictor in our MSSR?

• RQ4: How is the rationality of the attention fusion weight distri-
bution in MSIA?

• RQ5: How is the model interpretability of our MSSR?

4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics. We follow [30] and
conduct experiments on four public and real-world datasets. One is
a widely used dataset for the business recommendation, Yelp1. And
the other three are Toys, Beauty, Sports, which are constructed
from the Amazon review datasets2. We follow [30] and utilize the
categories and the positions as the side information for all the
datasets. As for dataset preprocessing, we follow [30] to remove
the users and items that occur less than five times, then we adopt
the leave-one-out principle to attain train data, validation and test
data for all the datasets. The statistics of the processed datasets are
summarized in Table 1.

For the performance evaluation, we follow [30] and use Recall@𝑘
and NDCG@𝑘 as the metrics, where 𝑘 ∈ {10, 20}. We follow the
suggestions in [3, 15] and evaluate the model performance in a full
ranking setting rather than only on some sampled items for a more
reasonable comparison.

1https://www.yelp.com/dataset
2http://jmcauley.ucsd.edu/data/amazon/
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Table 2: The performance comparison of our MSSR against two groups of baselines on four datasets. Note that the best result of
each row is marked in bold, and the second best one is underlined.

Datasets Metrics SR baselines SISR baselines MSSRGRU4Rec SASRec BERT4Rec DuoRec GRU4RecF SASRecF S3-Rec FDSA-CL NOVA-SR CAFE DIF-SR

Yelp

Recall@10 0.0382 0.0612 0.0521 0.0641 0.0341 0.0417 0.0616 0.0625 0.0663 0.0633 0.0691 0.0715
Recall@20 0.0621 0.0922 0.0756 0.0951 0.0556 0.0675 0.0934 0.0921 0.0972 0.0954 0.1004 0.1063
NDCG@10 0.0192 0.0393 0.0328 0.0378 0.0175 0.0216 0.0396 0.0377 0.0406 0.0376 0.0413 0.0427
NDCG@20 0.0252 0.0465 0.0387 0.0450 0.0229 0.0281 0.0462 0.0451 0.0483 0.0453 0.0493 0.0513

Toys

Recall@10 0.0481 0.0879 0.0504 0.0947 0.0494 0.0738 0.0889 0.0851 0.0955 0.0809 0.0989 0.1033
Recall@20 0.0721 0.1202 0.0778 0.1297 0.0723 0.1058 0.1256 0.1169 0.1318 0.1055 0.1361 0.1414
NDCG@10 0.0267 0.0431 0.0323 0.0487 0.0274 0.0411 0.0433 0.0417 0.0469 0.0476 0.0493 0.0518
NDCG@20 0.0328 0.0499 0.0392 0.0575 0.0322 0.0491 0.0492 0.0507 0.0569 0.0543 0.0587 0.0614

Beauty

Recall@10 0.0542 0.0848 0.0608 0.0865 0.0561 0.0727 0.0865 0.0824 0.0869 0.0840 0.0891 0.0915
Recall@20 0.0845 0.1189 0.0881 0.1251 0.0885 0.1011 0.1219 0.1115 0.1243 0.1159 0.1292 0.1318
NDCG@10 0.0232 0.0409 0.0331 0.0441 0.0255 0.0427 0.0432 0.0424 0.0432 0.0437 0.0443 0.0458
NDCG@20 0.0309 0.0498 0.0401 0.0539 0.0339 0.0506 0.0483 0.0497 0.0524 0.0514 0.0544 0.0556

Sports

Recall@10 0.0292 0.0471 0.0395 0.0483 0.0317 0.0458 0.0492 0.0447 0.0522 0.0429 0.0548 0.0559
Recall@20 0.0466 0.0699 0.0586 0.0712 0.0479 0.0682 0.0694 0.0653 0.0751 0.0611 0.0798 0.0820
NDCG@10 0.0152 0.0216 0.0194 0.0247 0.0165 0.0245 0.0223 0.0222 0.0246 0.0254 0.0255 0.0262
NDCG@20 0.0195 0.0274 0.0232 0.0304 0.0218 0.0294 0.0287 0.0284 0.0302 0.0299 0.0318 0.0328

4.1.2 Baselines and Implementation Details. In order to show
the superiority of our MSSR, we choose two groups of baselines to
compare the recommendation performance, including sequential
recommendation (SR) baselines and side-information integrated
sequential recommendation (SISR) baselines.

SR baselines: (1) GRU4Rec [10] utilizes GRU layers to learn
the pattern of the item sequences. (2) SASRec [12] uses the self-
attention mechanism to learn user representation from the item
sequences. (3) BERT4Rec [26] adopts a bidirectional self-attention
network and conducts the Cloze task to predict the masked items
based on the sequence context during the training process. (4)
DuoRec [22] studies the problem of representation degeneration
and proposes solutions with contrastive learning techniques.

SISR baselines: (1) GRU4RecF enhances the original GRU4Rec
by taking the summation of the item embeddings and the side-
information embeddings as the input of the model. (2) SASRecF
extends SASRec and concatenates the item and the side-information
embeddings to be fed into the model. (3) S3-Rec [41] devises four
pre-training tasks with contrastive learning based on maximizing
mutual information. (4) FDSA-CL [7] is an enhanced version of
FDSA [35] that utilizes contrastive learning to exploit the beneficial
interaction of representations from the side-information level and
the item level. (5) NOVA-SR [19] devises a non-invasive attention
mechanism to learn user representation. (6) CAFE [16] fuses the
user representations at both the item and side-information levels
by addition to predict the next item. (7) DIF-SR [30] decouples the
attention calculation to attain the fused attention for learning user
representation.

We implement and evaluate all the baselines and our MSSR
based on RecBole [36] for a fair performance comparison. For all
the baselines and our MSSR, we train them with the same optimizer
Adam [14] and a learning rate of 0.0001. The latent dimensionality 𝑑
is set to 256 for all themethods.We tune all the hyper-parameters on
the validation data, following the suggestions in the original papers,
and report the results on the test data. For the two tradeoff parame-
ters in the Eq.(20), we choose 𝜆1 from {0.1, 0.2, 0.3, 0.4, 0.5}, and 𝜆2
from {2, 4, 6, 8, 10}. For the latent dimensionality 𝑑′, we choose its

value from {32, 64, 128, 256}. For the other hyper-parameters, we
follow [30] and search the attention layer number 𝐿 from {2, 3, 4},
and the attention head number𝑀 from {2, 4, 8}. All the model are
trained using Tesla V100 PCIe GPU with 32 GBmemory. Our source
code is available at https://github.com/xiaolLIN/MSSR.

4.2 Overall Performance Comparison (RQ1)
We report the experimental results of eleven baselines and our
MSSR in Table 2.

Among the SR baselines, we have the following observations:
(1) Both SASRec and BERT4Rec outperform GRU4Rec on all the
metrics across all the datasets, which demonstrates the superior-
ity of the self-attention mechanism. (2) BERT4Rec does not beat
SASRec, which is also observed in the previous works [3, 30, 41].
We attribute this phenomenon to the fact that the Cloze task of
training BERT4Rec might not adapt well to the next-item prediction
task in the full-ranking setting [3, 15]. (3) Compared with other SR
methods, DuoRec achieves the best results in most cases, except
that SASRec performs better in some cases on Yelp, which shows
the effectiveness of contrastive learning techniques.

Among the methods for SISR, we have the following observa-
tions: (1) Simple side information fusion, such as addition, may not
always be effective, which can be found by comparing the results
of GRU4RecF with its original version without side information. (2)
The results of SASRecF are worse than SASRec on most metrics
across the datasets. We attribute this phenomenon to the invasive
fusion utilized in SASRecF, which has the drawback of the com-
pound embedding space [19]. However, the well-designed fusion
strategy proposed in the recent works, such as S3-Rec, NOVA-SR,
DIF-SR and our MSSR, can help to improve the performance. (3)
Our MSSR outperforms DIF-SR. It indicates that our MSIA layers
capture more attentive pairs across distinct sequences and adap-
tively assign the fusion weight for each of them, which contributes
to a comprehensive learning of user representations. (4) Our MSSR
surpasses FDSA-CL and CAFE, which demonstrates the effective-
ness our user representation alignment module for optimizing the
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user’s multiple representations. (5) Our MSSR outperforms all the
baselines across all the metrics on four datasets, which shows the
superiority of our MSSR.

We consider more side information to further study the superior-
ity of our MSSR. Specifically, we add “city” as our side information
for Yelp, and “brand” for Toys, Beauty and Sports. We compare our
MSSR with three representative SISR baselines and report the re-
sults in Table 3. It is in line with our intuition that considering more
side information brings performance improvement in most cases,
which can be seen by comparing the results of the correspond-
ing methods in Tables 2 and 3. Meanwhile, our MSSR consistently
achieves the best results, which further verifies the effectiveness of
our MSSR in dealing with more side information.

Table 3: The performance comparison of our MSSR and three
representative baselines while using more side information.

Datasets Metrics Baselines MSSRFDSA-CL NOVA-SR DIF-SR

Yelp

Recall@10 0.0634 0.0679 0.0699 0.0716
Recall@20 0.0936 0.0977 0.1031 0.1069
NDCG@10 0.0379 0.0413 0.0423 0.0431
NDCG@20 0.0461 0.0494 0.0505 0.0518

Toys

Recall@10 0.0856 0.0967 0.0997 0.1035
Recall@20 0.1177 0.1322 0.1377 0.1419
NDCG@10 0.0424 0.0486 0.0504 0.0521
NDCG@20 0.0516 0.0575 0.0603 0.0614

Beauty

Recall@10 0.0829 0.0888 0.0898 0.0916
Recall@20 0.1114 0.1250 0.1289 0.1322
NDCG@10 0.0431 0.0442 0.0452 0.0463
NDCG@20 0.0493 0.0535 0.0542 0.0559

Sports

Recall@10 0.0467 0.0531 0.0553 0.0564
Recall@20 0.0685 0.0762 0.0795 0.0819
NDCG@10 0.0233 0.0249 0.0253 0.0261
NDCG@20 0.0295 0.0301 0.0319 0.0327

4.3 Ablation Study of MSSR (RQ2)
To analyze the contribution of different modules in our MSSR,
we conduct a detailed ablation study and report the results in Ta-
ble 4. Specifically, we study the contributions of the multi-sequence
integrated attention (MSIA) layers, the user representation align-
ment (URA) module and the side information predictor (SIP). For
MSIA, we further study on its inter-sequence attention (IA) and
adaptive attention fusion (AAF). It is worth noting that MSSR(w/o
MSIA&URA&SIP) is equivalent to SASRecF. We have the following
observations:
• MSIA contributes the most to the performance of our MSSR,
which can be verified by the prominent improvement ofMSSR(w/o
URA&SIP) over MSSR(w/o MSIA&URA&SIP). It shows the effec-
tiveness of the MSIA layers to learn the user’s representations.

• MSSR(w/o IA&AAF&URA&SIP) retains the sequence-specific
projections and the intra-sequence attention. It outperforms the
variant from which the whole MSIA is removed, which demon-
strates the importance of decoupled attention calculation. More-
over, the performance is further improved once we add AAF to
the model. It shows the validness of adaptively assigning fusion
weights in our MSIA.

• URA can further improve the performance, which can be seen
from the fact thatMSSR(w/o SIP) outperformsMSSR(w/oURA&SIP)
on every dataset. It shows the effectiveness of constructing the

positive and negative pair samples in the contrastive loss with
the self-supervised signals.

• Comparing MSSR(w/o URA) with MSSR(w/o URA&SIP), the per-
formance gap shows that our SIP can further refine the user’s
representations to improve the prediction performance.

• Our whole MSSR performs the best compared with all its variants,
which demonstrates the complementary effect of all the designed
modules in our MSSR.

Table 4: Ablation study of our MSSR (Recall@20).

Variants Yelp Toys Beauty Sports

w/o MSIA&URA&SIP 0.0675 0.1058 0.1011 0.0682
w/o IA&AAF&URA&SIP 0.0967 0.1301 0.1240 0.0757
w/o AAF&URA&SIP 0.0979 0.1313 0.1255 0.0764
w/o URA&SIP 0.0981 0.1321 0.1263 0.0770
w/o SIP 0.1041 0.1374 0.1280 0.0806
w/o URA 0.1005 0.1376 0.1298 0.0807

MSSR 0.1063 0.1414 0.1318 0.0820

4.4 Exploratory Study (RQ3)
In this section, we conduct the exploratory study to some other
options for the design of our attention layer and item predictor.

4.4.1 Attention Layer. We compare our MSIA layer with the
self-attention (SA) layer of SASRecF, the non-invasive attention
(NOVA) layer of NOVA-SR and the attention layer of DIF-SR (DIF).
To directly and properly show the superiority of our MSIA, for
DIF-SR, we remove the auxiliary loss. And for our MSSR, we retain
our MSIA layers only to attain the user representation at the item
level for item prediction, without any other auxiliary losses.

We show the performance results in Figure 4(a). We can observe
that our MSIA layers outperform all the other attention layers,
which further demonstrates their effectiveness of learning atten-
tions from multiple sequences and adaptively fusing them to learn
the user representations.
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Figure 4: (a) The performance (Recall@10) of different atten-
tion layers on four datasets. (b) The performance (NDCG@10)
of our MSSR using different item predictors for calculating
the prediction scores on four datasets.

4.4.2 Item Predictor. We compare the following four predictors:
(a) our learnable weighted summation as Eq.(18); (b) the direct sum-
mation, i.e., �̂�𝑣𝑖 = 𝒓𝑢𝑣

(
𝒆𝑖𝑣

)⊤+∑
𝑎𝑘∈A 𝒓𝑢𝑎𝑘

(
𝒆𝑖𝑎𝑘

)⊤
; (c) the dot product

between the fused representation obtained by a full-connected layer
and the item embedding [35], i.e, �̂�𝑣𝑖 = FC

( [
𝒓𝑢𝑣 ; 𝒓𝑢𝑎1 ; . . . ; 𝒓

𝑢
𝑎𝐾

] ) (
𝒆𝑖𝑣

)⊤;
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and (d) the dot product between the user representation at the item
level and the item embedding, i.e., �̂�𝑣𝑖 = 𝒓𝑢𝑣

(
𝒆𝑖𝑣

)⊤.
In Figure 4(b), we can see that the predictors (a), (b) and (d)

outperform predictor (c) across all the datasets, which indicates
that maintaining consistent types of information between repre-
sentation and embedding is preferable when calculate dot products.
Moreover, considering more dot products and learning weights to
quantify the importance of different dot products help improve the
performance, which can be proved by the fact that our predictor
(a) outperforms both predictors (b) and (d). This exploratory study
demonstrates the effectiveness of our item predictor.

4.5 Visualization and Case Study (RQ4&RQ5)
Our MISA layers employ a learnable vector to quantify the impor-
tance of different attentive pairs. In Figure 5, we visualize the weight
distribution in vector𝒘 of Eq.(7) on Yelp. As we treat the categories
and the positions as the side information, we have nine attentive
pairs. Taking “ic” as an example, it denotes the fusion weight of the
attention matrix that is calculated using the query matrix of the
item sequence and the key matrix of the corresponding category
sequence. We can see that “ii”, “cc”, and “ic” are the three most
dominant pairs, which is in line with the intuition that we are more
inclined to rely on the previously visited shops and their categories,
when considering the next shop to visit. It shows the rationality
of our MSSR that adaptively fuses various attentions of both intra-
and inter-sequence interactions.

ii ic ip ci cc cp pi pc pp
Attentive Pair

0.178 0.128 0.110 0.120 0.159 0.082 0.089 0.067 0.067
0.10

0.15

Figure 5: The visualization of the weight vector on Yelp.

In Figure 6, we visualize the attention distributions about the
three aforementioned pairs on a specific interaction sequence which
contains ten items and their corresponding categories. The target
item to be predicted in this case is “China Impression”, and its
corresponding category is “Chinese Restaurants”. We can observe
that our MSSR can endow the prominent attention weights to the
target category and the similar category “Chinese Noodles”, which
demonstrates the interpretability of our MSSR.

Figure 6: A case of attention distributions about three atten-
tive pairs, i.e., “cc”, “ic”, “ii”. The target and similar categories
are highlighted with red and green borders, respectively.

5 RELATEDWORK
Sequential Recommendation. Early works [8, 24] utilize Markov
chains and matrix factorization to capture the sequential patterns.
With the development of deep learning, some techniques are ap-
plied in SR, such as RNNs [9, 10, 23, 31], CNNs [27, 32] and GNNs [1,
20, 34]. Some works [12, 18, 26] migrate the self-attention mech-
anism from Transformers [28] and show promising performance.
Recently, there are lots of works [2, 17, 21, 22, 29] proposing to
apply contrastive learning to SR to learn the better user representa-
tion. However, these sequential recommenders only consider the
item sequences and do not exploit the valuable side information.
Side-information Integrated Sequential Recommendation.
The early work pRNN [11] feeds the concatenation of the item
and side-information embeddings into GRU layers to learn the se-
quential patterns. S3-Rec [41] designs pre-training self-supervised
tasks to learn the correlations between the item and its side infor-
mation. ICAI-SR [33] constructs heterogeneous graphs to attain
the fused item embeddings and feed them to the sequential model.
NOVA-SR [19] proposes a non-invasive attention mechanism to en-
hance the attention calculation. DIF-SR [30] decouples the attention
calculation of items and side information to attain the fused atten-
tion matrices. However, these works on SISR only learn the user
representation at the item level and seldom consider the complex
association of multiple sequences. Some works learns the user rep-
resentations at both the item and side-information levels. FDSA [35]
and its enhanced version [7] use separate self-attention layers to
extract the representations at two levels, which are then concate-
nated and fed into the prediction layer. Similarly, CAFE [16] takes
the sum of two representations to calculate the prediction score. In
the industrial scenarios of click-through rate prediction, there are
also some works [4, 37–40] incorporating some side information to
calculate the attention between the target item and each interaction
in the user’s historical sequence. Among them, TIN [40] proposes
the target-aware temporal encoding, which helps to capture the
semantic and temporal correlation between the target item and
historical interactions.

6 CONCLUSION
In this paper, we propose a novel model named MSSR for side-
information integrated sequential recommendation. Specifically,
we design the multi-sequence integrated attention layer to adap-
tively leverage both intra-sequence and inter-sequence interaction
to learn a user’s multiple representations. Moreover, we introduce
a user representation alignment module to optimize multiple repre-
sentations of the same user by leveraging the self-supervised signals.
And our side information predictor can further refine the user’s rep-
resentations during training. For item prediction, we consider the
available side information to enable a comprehensive measurement
of the user’s preferences. Extensive experiments show the effective-
ness of our MSSR. Visualization and case study also demonstrate
its rationality and interpretability.
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A ETHICAL CONSIDERATIONS
During our research, we have consistently followed ethical guide-
lines. We used commonly available open-source datasets for our
experiments, and any user-related information in these datasets has
been anonymized, ensuring the protection of user privacy. More-
over, we strictly adhered to data usage guidelines. We utilize the
datasets only to validate the effectiveness of our proposed model,
without any involvement in commercial profit. As for the security
considerations, we ensure that our item recommendations do not
compromise the security or safety of the user.
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